شناسایی تقلب در کارت‌های بانکی با استفاده از شبکه‌های عصبی مصنوعی

Authors

  • محمود البرزی استادیار گروه مدیریت صنعتی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
  • ملیحه وثوق کارشناس‎ارشد مدیریت فناوری اطلاعات، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
Abstract:

هرچند آمار دقیقی از تقلب در کارت‌های بانکی معتبرِ کشور وجود ندارد، به نظر می‌رسد تقلب در کارت‌های بانکی روند رو به رشدی دارد و می‌تواند در آیندۀ نه‎چندان دور به یکی از معضلات سیستم بانکی کشور تبدیل شود. متأسفانه هنوز در کشورمان تحقیقات مناسبی در این خصوص صورت نگرفته و سیستم بانکی مدل یا مدل‌هایی کارا نیاز دارد که بتواند امنیت استفاده از کارت‌های بانکی را تضمین کند. لذا در این پژوهش، پس از شناسایی انواع تقلب‌های رایج در زمینۀ کارت‌های بانکی و شبیه‌سازی تراکنش‌های متقلبانه، با بهره‌گیری از شبکه‌های عصبی مصنوعی، مدلی برای طبقه‌بندی تراکنش‌ها به تراکنش‌های سالم و متقلبانه (مشکوک به تقلب) ایجاد شد. این مدل که از نوع شبکۀ عصبی پرسپترون چندلایه است، علاوه‎بر اینکه مبتنی بر سیستم بانکی داخلی کشور است، توانسته است با دقت 99درصد، عملکرد نسبتاً خوبی در طبقه‌بندی مزبور داشته باشد. با مقایسۀ معیارهای ارزیابی عملکرد محاسبه‎شدۀ این پژوهش و نتایج مدل‌های ارائه‎شده در مطالعات دیگر، مشخص شد معیارهای ارزیابی عملکرد پژوهش حاضر از روایی و پایایی مناسبی برخوردارند

similar resources

شناسایی تقلب در کارت های بانکی با استفاده از شبکه های عصبی مصنوعی

هرچند آمار دقیقی از تقلب در کارت های بانکی معتبرِ کشور وجود ندارد، به نظر می رسد تقلب در کارت های بانکی روند رو به رشدی دارد و می تواند در آیندۀ نه‎چندان دور به یکی از معضلات سیستم بانکی کشور تبدیل شود. متأسفانه هنوز در کشورمان تحقیقات مناسبی در این خصوص صورت نگرفته و سیستم بانکی مدل یا مدل هایی کارا نیاز دارد که بتواند امنیت استفاده از کارت های بانکی را تضمین کند. لذا در این پژوهش، پس از شناسای...

full text

تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی

هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...

full text

شناسایی مدل دینامیکی هواپیما با استفاده از شبکه‌های عصبی مصنوعی

در این مقاله‌، روشی جهت شناسایی مدل دینامیکی هواپیما در حالت 6 درجه آزادی‌، با استفاده از شبکه‌ی عصبی ارائه می‌شود‌. برای مدلسازی با شبکه‌های عصبی‌، آگاهی قبلی نسبت به ویژگی‌های سیستم چندان مورد نیاز نیست و می‌توان با بکارگیری مجموعه‌ای از ورودی‌ها و خروجی‌های ثبت شده‌ی سیستم‌، عملیات شناسایی را انجام داد‌. لذا این شیوه برای هواپیما که تعیین مقادیر دقیق جرم‌، ممانهای اینرسی‌، مشتقات پایداری و ک...

full text

پیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی

امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...

full text

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  721- 746

publication date 2015-01-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023